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We propose a mixed method for solving the two-dimensional
unsteady vorticity equations by using the Fourier-spectral approxima-
tion in the periodic direction and Chebyshev-spectral approximation in
the non-periodic direction. Some numerical results are given, which are
compared with those of other methods. Stability of the scheme and the
optimal rate of convergence are proved. © 1992 Academic Press, Inc.

1. INTRODUCTION

There is much literature concerning the numerical solu-
tion of partial differential equations describing fluid flow.
For instance, Roache [1], Raviart [2], Ben-yu Guo [3],
and Canuto er al. [4] developed difference, finite element,
and spectral methods. In studying boundary layer flow past
a suddenly heated vertical plate and some other problems,
we have to consider unilateral periodic problems, e.g., see
Murdok [5], Ingham [6], and Moin and Kim [7]. There
are several ways to solve such problems numerically.
Murdok [5], Ingham [6], Macaraeg [8], and Guo and
Xiong [9] proposed spectral-difference methods while
Canuto et al. {10] and Guo and Cao [11] used spectral-
finite element methods. They adopted spectral approxi-
mation in periodic directions and difference or finite
clement approximation in non-periodic directions. Many
calculations show that such mixed methods provide better
numerical results than pure difference and finite element
methods.

As we know, pure spectral method has the accuracy of
“infinite” order. It means that if the genuine solution of a
partial differential equation is infinitely differentiable, then
the error of discretization in space is of order higher than
any order of N ~', N being the number of the basis functions
in spectral approximation. But the accuracy of both the
spectral-difference method and the spectral-finite element
method is still limited, due to the approximations in
non-periodic directions.

In this paper, we propose another kind of mixed method
for solving two-dimensional unsteady vorticity equations by
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using Fourier-spectral approximation in the periodic direc-
tion and Chebyshev-spectral approximation in the non-
periodic direction. If M and N are the numbers of the basis
functions in Chebyshev and Fourier spectral approxima-
tions, respectively, then the error of discretization is of
“infinite” order. Thus such a method keeps the advantage
of the pure spectral method. We shall give the scheme in
Section II and the theoretical results in Section III. The
numerical results are presented in Section IV. In Section V,
we list some lemmas. Finally we give strict proof of the
error estimation in Section VI.

II. THE SCHEME

LetI,=(—1,1),1,=(0,2n),and 2 =1, x I,. We denote
the vorticity, stream function and kinetic viscousity by
E(x, p, 1), ¥(x,, 1), and v> 0, respectively. The functions
S1(x, v, t), fo(x, y, t), and &y(x, y) are given. Let T>0 and
consider the following two-dimensional vorticity equations:

NGV V=S (p)e@re(0,T]
_V2¢=é+f25 (x,y)e.Q, IE(O, T]’
é(x’ ys 0)=<0(xa Y), (xs }’)EQ’ (21)
where
_0oy ofoy
J&9) = ox dy 0Oy ox’

We assume that all functions in (2.1) have the period 27 for
the variable y, but ¢ and y satisfy non-periodic boundary
conditions for | x| = 1. For simplicity, we suppose that for all
yelandt<T,

SxLy,)=y(+1,y 1)=0. (22)
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Let M and N be positive integers. We by P,, denote the
set of all algebraic polynomials of degree less or equal M,
and then define

Vill)={v(x)e Py /o(—1)=0(1)=0}.

Let V(1) be the set of all real trigonometric polynomials
with the period 27 and the degree less than or equal to N.
Define

SM, N(Q) =Vull)® VN(Iy)'
Let
o(x)=(I—x?) 2
and define the space

L?(R2)= {vis measurable/(v, v),, < o0 }

equipped with the inner product
u,v),=— . , dx dv.
an u(x, y) v{x, y) w(x) dx dy

Let Py, v: L2(2) = Sy, ~(£2) be the orthogonal projection;
ie, for any ue L2(R2), the projection P, yue S, y(2)
satisfies

(u— Py yu, 0),=0, Yoe Sy v(82)

Let t be the step of the variable 7 and define
R, ={t=hk/2<I<[T/7]}.

We shall use the following central difference quotient to
approximate the term (6&/0t)(1)

$i(t)=(1/20)(¢(1+ 1) = (1 —1)).

Let n and ¢ be the approximations to ¢ and ¢, respec-
tively. By using the above approximations, we obtain fully
discrete Fourier—Chebyshev spectral scheme for solving
(2.1)(2.2). Tt is to find (n(2), (1)) € Sps M(82) x Sy 4(£2) for
all t e R, such that

(1:(1), v)o, + (J(n(2), (1)), V),

+§aw(n(t+ )+ n(t—1),0)

= (fl(t)s U)w,
a,(@(1), v) = (n(t) + f5(2), v).o,

0
n(r)=PM‘N(éo+ra—f(0)),

n(0) = Py w0,

Yve S Q),
m.n(82) (2.3)
Ve Sy, Q).
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where

1
a,(u,0) = | Vulx,y)-Vio(x) vix, ) dx dy.

o¢

52 (0) = W2 &= J(Eo, o) +£1(0)

HI. THEORETICAL RESULTS

For error estimations, we need some notations. We first
introduce some Sobolev spaces with the weight w(x) in I,
(see [12]). For integer s > 0, set

HE (1) = {ueLzux)/||vn§,w,,x

5 de dkl) 1/2
=<Eo (G W)) <°O}

and denote by Hg (1,) the closure of C(1,) in H: ().
For real s >0, we define H; (I,) by the complex interpola-
tion between the spaces H *)(1,) and H s+ 1)(1,). Similarly,
Hy ,(I,) denotes the complex interpolation between the
spaces H{*)(1,)and H (1)

Next, let B be a Banach space with the norm |- || and 7 an
interval in R. Define

L*(1, B)= {v(z): I > B/v is strongly measurable,

ol 127,y < 00 },
C(I, B)= {v(z): I - B/v is strongly measurable,

vl s < o0},

where

1/2
ol = (] a3 )

llvlll s = max Jlo(z)| 5.
Zel

Moreover, for all integer u > 0, define

H*(I, B)= {U(Z)GLZ(L B)/HUHHI‘(I,B) < oo}

2N\ 172
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If real number x>0, then we define H#(I, B) by the
complex interpolation between the spaces H'™1(I, B) and
H¥*1)(I, B).

equipped with

"

ol H“(I.B)=< Z

k=0

v
0z*
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For simplifying the statements of the theorems, we also
define the following spaces: For r, s 20, a, f > 1, set

H Q)=
XhQ)=

LA, Hi (L)~ H(I,, L2(1,),
HZ(Q)nHXI,, H}(1,))nH**(I,, H. (1))

w

with the norms

2 1/2
HUHH’ S = {“U“ LA H (It))+ ”U”HS(I} LZ(I‘))} !

HUHX’ S = {“U“ HE: oyt “v“H“([, HE (1))

2
ol b, a7
If r, s > 1, then we define

M(Q)=H ()N H'(I,, H, (1) nH' ™ (1, H (L))

with the norm

HU“M”(Q) {“UHH"(Q)'*’“UHHl(I} H\

+ || Hs—l(zy,n('u(m)}

Now, let C 7(£2) be the set of all infinitely differentiable
functions defined on I, x1,, with the period 2z in the
variable y. We denote by H77 (2), M} (2), X7, (2) the
closures of C°(22) in the spaces H’(Q), M”(Q), and
X°(£2), respectively. Also set

HE, (Q)=H(Q)n L1, Hy (1),
Mg, (2)=M5(Q)n LI, H) (L))

If r=s, we denote H(Q), Hj’, (), and ||| Hs@) Y
H!(Q), Hopw(.Q), and |-|,, for simplicity. The corre-
sponding semi-norm is denoted by |-|, ,,, etc.

In addition, we denote by L*(1,), L*(£2), and W'~ (R)
the usual Sobolev spaces of essentially bounded functions
with the norms |-, |-ll4 and |- ., respectively
(see [13]).

We now consider the generalized stability of scheme (2.3).
Suppose that the initial values #(0), #(t) and the right terms
£1(1), £>(¢) have the errors 7(0), 7i(t), f,(¢), and f5(¢), respec-
tively, which induce the errors of 5(¢) and ¢(7) denoted by
7i(¢) and @(¢). Then they satisfy the equations

(7 (1), v)o, + (J(n (1) + 7(1),
+ (J(7(2), @(2)), v),,

@(1), v},

<

Ea(u('l(t+f)+’7(t-f) )

= (fl(t)> U)a),
a,(§(1), v) = (i) + fo1), ),

Yo e Sy M),
Yo e Sy n(Q).
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For describing the errors, we introduce the notations

E@, 1) =f()I2

VT .
+3 XA+ A0 =l

p(1) =2 [HO)Z + 2 7(x)]|2 + 4 i G(1)
with

G ()=2|fi(t)|2+= ||f1(t 12 . 1 f(012

+ A 7y,

where C is a positive constant which could be different in
different cases. We have the following result.

THEOREM 1. There exist positive constants M, and M,
depending only on ||l 1, .., l@ll\ . and v, such that if for
some t € R,

p(t;) M S My(N+ M)™!
then forall te R, t <t,, we have

E(#, 1)< p(1) €M,
where

il 1, oo = max n()lly ,,  ete.
1e R;

We next turn to the convergence of scheme (2.3). In
order to obtain optimal error estimation, we introduce the

projection P, v Hy , (2)— S, A(2), ie, for any
ueHg , (Q), we have
a,(u— P, yu,v)=0, Vue Sy v(2).
Now put
SO =Py nC), Y1) =P}, Y (2).
Then integrating by parts, we obtain from (2.3) that
(1), )+ (J(E* (1), Y*(1)), v),,
30, (E )+ EX 1), 0)
= (/1(1), v), + (E((1), v),,
+va,(E,(1), v)+ A(v), Yve S, M2), -
a (Y*(1), v) = (E*(2) + f2(2), v),, G2
+(E3(t)s U)cu’ vUESM,N('(Q)s

E* (1) =P}, y&(7),
$*0)= P}u,Néo,



210
where
_exgpny 98

E\(t)=CF () at(t),

Ey(t)=3&(t+ 1)+ 3E(1— 1) — (1),

Ey(t) = —E* (1) + &(1),

A() = (J(EXQ), y*(21)) = J(&(2), Y (1)), v),,-
Let

Eny=n()=&*1), P =) —¥*().

By substractmg (3.2) from (2.3), we obtain

(Z:(1), 0) o + (JEX(2) + E(1), Y(1)), v)
+ (J(E(2), y*(1)), v),,

+Xaw(f(t+r) +&(t—1),v)

2
—(E\(1), v),—va (Ez() v)— A(v), Ve Sy M),
a,(P(1), v) = (&(t), v), = (Ex(1), 1)y, VU E Sy n(82),
_‘f

6= Pun (8045

E(O) = PM,N‘fo —-P

(0 ))—Pimé(r),

(3.3)

mnCo-
We have the following result.
THEOREM 2. Let (&, 4) and (n, @) be the solutions of
(2.1) and (2.3), respectively. Assume that
(i) &yeCO, T, My, ()W, ()N

0,pw
0
L eco. T mp@),

X50(2)),

2

0
€ L0, T H! (2)),

3

—eL*0,T; L2(Q2))

(3 a3
withr,s>1, 0> 5 and p>3;
(ii) For some positive constant C, and C,,

CINSM<ON, T=0((M+ N) V),

then there exists a positive constant M 5 depending only on £,
Y, and v such that for suitably small t and M, N large enough,
we have

t—1 1/2
1) —=n(Dl., + (T ,Z 6y~ n(t’)llim>

<M (7> +M "+ N %),
W (1) = o) 1,o < M3(T> + M' 7
We shall prove Theorems 1 and 2 in Section VI.

+N'7¥).
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IV. NUMERICAL RESULTS

This section is devoted to numerical experiment. We give
two examples.

ExampLE 1. Let Q@=(0,1)x(0,1), [I,={x=jh/1
<jEM—1, Mh=1} and I,={y=j/N/OSj<N-1}
Define

E ()= max [{(x,y,1)—n(x,p 1),
(x,v)elpxly
h 172
EO=(5 T lsno-ntnor)
(x, vyelpxIy

where 7(x, y, t) is the approximation to &(x, y, ¢). Ben-yu
Guo and Yeu-shan Xiong [9] use the spectral-difference
(SD) scheme to compute problem (2.1) with two kinds of
flows in the domain Q. For comparison, we run the same
examples using the Fourier-Chebyshev spectral (FCS)
scheme proposed here. The results are

(i) The first flow. Let
&x, 3, 1) =
Y(x,y, 1) = Aexp{wt}(Cx + sin 2zy).

A exp{Bsin(Cx + 2ny) + wt },

The errors of both the SD and FCS schemes are shown in
TableI for A=C=w=0.1, B=0.01, and t = v =0.001.

(i1) The second flow. Let
&(x, y, t)= A exp{Bsin(Cx + 2ny) + wt},
Y(x,p, t)=

The errors are shown in Table Il for A=B=C=w=0.1
and 1 =v=0.001.

ExampLE 2. Let I =(—
functions are

E=0.4(x> — 1)(x* —

A exp{wt} sin Cx sin 2xy.

1,1) and 7,= (0, 2n). The test

8) sin 2y e!/? -V =¢

For describing the errors, we define

Zre[ Zye[ |é x )’, ) ”(x,y’ I)F
N = 7
B S ST I |
N R A
B ZXGL Zyefy |¢(x’ Vs t)'z

TABLE I
Errors for SD and FCS Schemes

SD FCS
t=1 M=10,N=4 M=4N=4
Ey(t) 0.2217x 1073 0.5435x 1073
E_(1) 0.6949 x 103 0.6497 x 1073
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TABLE 11
Errors for SD and FCS Schemes
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TABLE IV
Errors for FCS and FSFE Schemes with v =0.0001, t =0.01.

SD FCS FCS FSFE
t=1 M=10,N=4 M=4 N=4 =5 M=4N=4 M=4N=4 M=10,N=4
Ey(1) 0.1501 x 10-3 0.5456 x 105 E(&(1)) 0.9165x 10~* 04532x 1072 0.1284x 10~
E(W(1) 0.8448 x 10~* 0.1582x 10~  0.1580x 10~2

I, = {x;=cos(mj/N,),j=0,1,. o Nty
I,={y;=mj/N,,j=0,1,..,2N,}.

We use the Fourier-Chebyshev spectral scheme (FCS) (2.3)
to solve (2.1)~(2.2). For comparison, we also consider the
Fourier spectral-linear finite element scheme (FSFE), in
which I, is uniformly partitioned with the mesh size
h=2/M. The results are shown in Tables Il and IV.

It can be seen that the results of the FCS method are
much better than those of the SD method or the FSFE
method. Very high accuracy solutions can be obtained with
the FCS method by using only a small number of modes.

V. SOME LEMMAS

We list some lemmas which will be used in next section.

LEMMA 1. Foranyu,ve H. (8), we have

0,pw
(i) au(wu)>glluli.,
(1) la,(u, )| S 2l 10 [v]),0-

Proof. For integer j, define

1

u,-(X)=—JI u(x,y)e 7 dy.

> (5.1)

Clearly u;e Hg ,(1,), and

pAic:

a,(u,u)=

0
u;,, — (ou, +72%(u;, u; .
e J))LZUX) J*(u; J)Liu,)]

TABLE III
Errors for FCS and FSFE Schemes with v=0.001,  =0.01.

FCS FSFE
t=5 M=4N=4 M=4N=4 M=10,N=4
E(&(1)) 03027 x 10+ 04436 x 102 0.7188 x 102
EW() 0.1687 x 10~ 0.1592x10~1  0.1455x 102

By Lemma 2 of [14], we obtain

Ci D)) 1
o 5 ) b 2 Ve

and thus

o
a,(u, u) % Z NeilT o7, + 72 N 12 1) = 5 3,

Next, we have

& 0 0
a,(u, v)= Z [(5 Uy =

1j1=0

(wvj)> + jz(uja Uj)Li(l,)]'
L2(1y)

By Lemma 3 of [ 14], we have

G, 0
—('E U, a (wvj) <2 Iujl L, Iy |vj| 1,0, 1y

and so

[cel

la,(u, v)| Z

|”'l1,w,1, |Uj|l,u),lx
2
+J ||u»||a, Mol )

12
( 5 Uuhw&+JIWHwb0

1jl=

12
( Z (lv; |1w1x+12 llv; ||mlx)>

1il=0

=2 |uj| 1,w |Ujll,w'

LEMMA 2. [fue Hg', (2) andr, s20, then there exists

a positive constant C independent of M, N, and u, such that

[l —

Py wullo SCM "+ N7 ul s

Proof. Let wu; be the same as in (5.1) and

P, L2(1,) > V,(I,) be the orthogonal projection. Then

Pywtt= Y, (Pyulx))e”.

it N
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By Theorem 2.1 of [10], SCM*=0 % u?,
iI<N ”
Nty = Poaghy o, 1, S CM 7 Nt + N2 5 (Pl
and, thus, >~
+ 128 u. 2
R O Y (T SV L Y 1 U )
<N >N SCM' "+ N7V |uliayrsa)
<CM72" Z 'ujliu) Iy .
JleN ’ By means of the duality and the fact that C, N< M < C, N,
) it is not difficult to show that
+CN2 Y IF e,
11>~ _ . —r —s
s lu— Py yull, <CM "+ N )M ="+ N'7%) Jul s
SCM ™ Vul 1, 11 Y
L2y 02 SCM ™"+ N =) ol i)
+CN lulHS(,y,Lzmux,)
-r —5y2
SC(M ="+ N 7°) uljpsqa)- Lemma 4. If C,NSM<C,N and uecH}  (2)n
a’ﬁ . _1‘ é > .
. L X () witho> 3, f > 3, then there exists a positive constant
Lemva 3. IfueH, , (Q)aM(Q) and 1,52 1, then ¢ independent of M, N, and u, such that

there exists a positive constant C independent of M, N, and u,
such that

= Py wttll 1o SCM' ™"+ N'70) [l ppri-

If, in addition, for positive constants C, and C, such that
C,N< M <C,N, then we also have

nu—P}w,NUHwSC(MAr‘*'N*s) |u|M;;5(.Q)-

Proof. Let u, be the same as in (5.1) and
u,= y. (Ppu(x))e”,

I/l N

where P, u;(x) is given by

0 0
<Ec— (uj~P}Muj),a(a)v)> =0, Yve V()

L3(1y)
According to Theorem 1.6 of [15], we have
2

o, I

<SCM*~ " uill, 1., #=0,1,1j1=0,1, ...

”uj—P,lwuj“

Using of Lemma 1, we have

lu— Py yulli,<C inf

2
u—7v
sodnf | 7.0

gC uu—u*"ia)

<C Z (Huj—P}WujHim,lx
ljiI<N
+ 7% = Phoulen)

+ Y w3 on +i72 N2, )
ljl>N

”Pj‘v!,Nu” Lo S C |lul x%B(e2)-
Proof. Let

Pl yu= 3y, uf(x)e”.
l/lsN

Then

1Ph w2 Ll oo s+ 1 1 0,1 (52)

ljIs N

Let u; be the same as in (5.1) and IT,,: C(I,) - P, be the
Lagrange interpolation whose interpolation points are the
extreme points of Chebyshev polynomials of degree M, i.e.,

In
X, =C08 Y4 3

Then

Huj*lll‘oo,lx < ”“j* - HMuj Hl,oo,lx+ ”uj" HM“; | 1,090,715

(5.3)

+ il 1 001,

By the inverse inequality in P ,, (see theorem 1 of [16]), we
have

16451 o1, < CM Y2 N1yl

By error estimation of interpolation (see Theorem 3.1 of

[12]),

”uj - HMuj“m,w,lx < M= ||uj I Bow, Ix
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Hence
¥ — Hyut|ly o0,
SCM "V lup = Myt o1,
<M ™ty = 1, 1= gty 1)
SCM Y2 ;= w¥ |y o+ CM27F 1l g1

SCM' Ju;—ul |y o1+ Cllwl g o1, (5.4)

Because of B> 3 and w(x) 2> 1,
Hi(I )= H1,)s C*(I,).

Therefore by error estimation in the maximum norm of
Chebyshev polynomials (see [17]), we obtain

ClnM
““j - HMuj I Lot € 7]‘—4_ ”“j | cary € C ”ujHﬂ,w,lr'
(5.5)
On the other hand, we have from Lemma 3 that
Z “U;* I Loty € CM'? Z ““j_ u]* I 1,00,

it N ljlsnN

+C Z N4l g, ot

[HEX

2 Ny

il N

1/2
1/2a71/2 2
<CM'NY ( u ||1~w,,x)

1/2
ve( g a+ qu)

lil<N

12
<X )
lits N
SCM'N'"(M '+ N~ ") |ull,.,
+C ”u“H“(ly‘Hff,(l_\-))
<C ”u“x«-ﬂ(m-

(5.6)

By substituting (5.4)-(5.6) into (5.3), we obtain the estima-
tion for ||u* ||, ;. We can estimate | j| [|u*|| 5 ;, in similar
way and then complete the proof by (5.2).

LEMMA 5. Ifu,ve H)

0, p,w

() and ze W ;*(Q), then

[(J(w, 2), 0) | L2 ||zll1, o0 N1l 101,00

Proof. By integrating by parts, it is easy to verify that

[(J(w, 2), 0) + (J(v, 2), 1), |

0z

5 [J‘ (f o afx)l/2
© I, \"VI
X (j 2w’ dx)l/2 dy].

Iy

<

~

(5.7)
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By Lemma 1 of [14],

L Vo’ dx < L (%)2 w dx.

(5.8)

Thus

|(J(u, 2), 0)o, | <10, 2), u),, |

0z 5 12
5 } Ugu wdxdy]

av 2 12
x UQ (&) w dx dy]

<2zl 00 el 1914 -

+

LEMMA 6. There exists a positive constant C independent
of M, N such that for all ue S, v(£2),

0
hull.. < CM 7 <||u||w+ ““

u w)

ay

Proof. Let u; be the same as in (5.1). Then u,e V(1)
and by Theorem 1 of [16],

e < 2 Ml s, SCMY2 30 Ny,

ljlsN ljts N

172
<CM‘/2( Y (1+j2)“)
IS N
x( Y

lJI<N

1/2
(147 ||u,ui)

Ju

w.)

<CM'”? (Hu\\w+ 3

LEMMA 7. There exists a positive constant C independent
of M, N, u, and v, such that for all u, ve Sy, 5(Q),
2 )1/2

Proof. We first show that if ue H%(Q), ve Sy v(Q),
and u(—1,y)=0 or u(l, y)=0, then there is a positive
constant C independent of M, N, u, and v, such that

2\ 1,2
) . (59)

w

0%

Ox dy

1w, 0)11Z, < CN [ulT, 19110 (\vlf,w +

0 ov
S ICHCRIE
X || w y

o]l 5, < C Jull,

In fact, we have

luvll?, < A(u) B(v),
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where
A(u)___ j sup u*(x, y) dy,
0 xel,
1
B(v)=1% f sup v(x, y) w(x) dx.
—lysl),
Let u(—1, y)=0, then
0 ,
sup u3(x, y) —SupJ 2u(x’, y)(? u(x', y) dx
xely, xely
<2 D sy | = (- )
S 2 e N ey 6xu Y 2

Because w(x) > 1 for |x| < 1, then

U
AQw) < fullo | =

(5.10)

On the other hand, we have

1
BOYSC [ Hox, My 15, gy () de

1
<C ([ o M 00

1 12
X[ 00 W ox) dx)

ov

2y 12
5)—} w) . (5.11)

<c1|v||w(uvni+

The combination of (5.10) with (5.11) leads to (5.9).

We next turn to prove the conclusion of the lemma.
Clearly
u 3
dy ox|l,

u o)
dx dy |,

Il (2, v)lli,<2< ) (5.12)

In addition, du/0x, 0u/dy, dv/0x, Ov/dy € Sy, () and

Ju

0y( L,y)=

v
ay

Hence we have from (5.9) that

Ju ov||? ov 0% 6_u
x| oyl lax oyl |ox|.
u|? u |2\ YV?
"( x|, " |oxdy ) ’

ouov|? ou 0%u v
5)7Bx ® oyl léx ayll, || 0x|,
av 2 aZv 2N\ 172
( o, " |ax oy ) |
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By substituting the above two inequalities into (5.12), we
obtain

6v 6’20 6u
2 <
ou|? 0214 2\172
X( ax|, | axay w)
R
Ox 8y x|,
2N\ 172
( axay w) ]
6u ou
14 N2
[( +N?) =
du v
X —_— ——
0x)|, | 0x 0y |,
Ou (3u ov
N 8y ax
v |? 820 2\ 12
x S
(F= k3= w) ]

0%
O0x 0y

2\ 172
(U>

<CN 2, ol (|v|iw+ {

LemMa 8. Letfe L2(R)and ue Sy, o(Q) be the solution
of
a,(,0)=(f,0),,  V0ES, Q). (5.13)
Then
Ou||? ~
i+ 5| <ciri,
y Law

Proof. We take v=u in (5.13). By using Lemma 1 and
Poincaré inequality, we obtain

lull}., <CIFI

Let

Y Fix)e.

R

u= 3y u;(x) e”, 7=

lilsN

Then u; € S,,(1,) for all | j| < N. By putting v=u;(x) e” in
(5.13), we obtain

(a% — (wuj)>l (5.14)

(u wu;), = (j,wuj),x.
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From Lemma 8 of [14],

9 5( ) .y
5l g @)) >l

Moreover,
~ 1 )
(f;> ouy),, *J Mo llZ,, + ||f||w,X |jl #0.
Thus (5.14) reads
2 1 .
‘ul1w1+ ] ”u ”le ”f“w[r |1 #0.

2 272’
Therefore,
oull?

ay

= Y P ulien it 1wl ]

Lo |jl<N

<C Y W13, CITIR.

lJIsN

LeEMMA 9. (see Lemma 4.16 of [3]). Suppose that the
following conditions are fulfilled:

(i) Z is a non-negative function on R_;
(i)

(iil) ForallteR andt>T,

D,, D, and q are non-negative constants,

Z(n<g+t Y, [D,Z(!')+ D, Z%(1)];

U'<t—1

(iv) Z(1)<q and qe**'"" < D, /D, for some t, € R., then
for all te R, and t <t,, we have

Z(1) < ge*.

VL. THE PROOFS OF THEOREMS

Proof of Theorem 1. We take v=7(t+1)+7#(t—1) in
the first formula of (3.1). By Lemma 1 and the identity

(i (1), it + ) + (2 = 1) = (D)0

we obtain

3
v oo -
+3 7+ 1)+t =i+ Y Fil2)
=1

(A1)

<G I+ +AE=DI2+ 217012, (61)
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where
Fi(0)=(J(n(2), (1)), it + 1) +7i(t = 7)) |,
Fy(t)=[(J(#(2), (1)), it + 1) + it — 1)) |,
F3(1)= [J( (1), §(0)), fi(t + 7) + 7i(t — 7))o |-

By Lemma 8 and the second formula of (3.1),

2

2
\ax P @(1) .
CUIANE + 1 F(D112).

@115+

(6.2)

Now, we are going to estimate |F,(¢)|. Clearly we obtain
from (6.2) that

Fi(0) < |1t + 1) + /(1 = Dll o 17(n(0), d())]ls
<Clit+ 1)+t =)o
X (D), o0 1G] 1,0

v ~
<3 I+ )+ a7t =),

+% ()13 o QAOIL+ISDNZ). (63)

We have from Lemma 5 that

F) S C oo 17D 12 +2) + (e =TT,

<53 i+ +A0=2)13.

C
+5 oI, o 1A, (6.4)

Furthermore, by (5.7), (5
we obtain

F(1) < [(J(

.8), (6.2), Lemma 6, and Lemma 7,

it + )+t — 1), §(1)), /(1)) |

H— o(1) llﬁ(t)llm I7(r+7) +7(t =)l 10

SCN2 i) 17+ 1)+ A1 =) 10

)

)
+ e (18010 + | £ 00
y

I7(t+ )+ At =Dl 1,0

X (I(T)(t)h,w+ Naiqﬁ(t)
y

)

x| o
vV . .
<35 it +o) +d( =) o

+C(N+M)

(A0S + 1 5015)- (6.5)
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By substituting (6.3)—(6.5) into (6.1), we have va, (Ex(t), v)| < < IUI o+ 128V [Ex(0)]2 .,
wmnmw+§%wu+n+ﬁu—ﬂﬁﬁ |A(0)] < I(J(E() = EX(2), Y*(1)), v),,|
| +1(JE@), Y1) — Y (1)), 0),|
2
<g It + )+ A=)l = [(J(E(1) = E*(1), Y*(1)), V), |
+Cy RN+ Co RO +Go(r), (66) FIVW@ =y, <) v
<10l IO 1E(2) = EX(1),,
where HIEO o 19(2) =Y * (D))
C C v 2 C * 2
Cr==(mliw+ o) Co=— (N+M), Stzg ety WO
i c i x |E(t) = EX()]12
Gy()=2 ||f1(t)“i+7 ”'1(t)“%oo WG FIE@D2 o () —y*()]12).

+ D 7,

We sum (6.6) for all ¥ € R, ' < t—7 to obtain

t—1

17N, + 1 = DI, +o Z 17t + )+ = )13,

16

<A + 1S,

+£ i Iz + 1)+ A7 =I5,

11—t
+2t Y [CyIAIE,

=1

+ Gy ()G + Go(1)]. (6.7)

Let 1 < 1. Because

(e + 1)+ 7t — 2 <2 i+ )2+ 2 170 —o)l2,

then (6.7) leads to

E(f, )< p(t) + 4t "ZT [(C,+1) E(#, ')+ CE*(f, ') ].

U'=1

Finally, we complete the proof of Theorem 1 by applying
Lemma 9 with
D,=4(C;+1),

D,=4C,, q=p(1).

Proof of Theorem 2.
and 5 that

It is easy to obtain from Lemmas 1

We take v=_E(t+ 1)+ &(t—1) in (3.3). By an argument
similar to that in the derivation of (6.6), we obtain

O+ g 18+ 0)+ &=,

% 1€(t+ 1)+ E( = )%+ CF 1€,

+CHIEWDINE + G0), (6.8)

where

C
Cr=— e Lot IV*IE L), CEF=C,,

Go() = I E((DIG, + 128V | E;(1)I1

C C
+ @] Lo IIEs(t)IIf,+; (N+M) | E5(1)l,

PO 10— 012

+HIEDNT o (@) =Y *(DIF).

So far, we can obtain a conclusion similar to Theorem 1.
In order to complete the proof, we only have to estimate
C¥, IE(0)lw> IIE(0)ll,, and G,(¢). First, Lemma 4 leads to

|||§*“| 1,0 <C |||§||| X*B(82)>
MY *Mll 1, 0 < C NI oty

Second, Lemma 2 and Lemma 3 lead to

1801, S NE(0) = Pag, w €O, + 1E(0) — Py v E(O),
SCM 7"+ N7 [0 prroy-
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Similarly, we have from Taylor formula that
NN, < NE() = Ph v EOIL,
+ED=E0) =55 0

w

+18(0) = Py, vG(0)l

% 0)=Pyrn (65 (0))

+7 (?t

w

SCM "+N7Y) (“f(f)“M;f(m

4 0) )
H(2)

+ [1£(0)]| aven T HE’ (

&t
+ Cr1? ,
o’ 0, T;L5(@))
<Y IB(OE<x T (Ilé;(t’)—é?‘(t’)lli,

)

r—t

Z &t
35
or

a_éz
ot

0
+en -5

<Ct(M ="+ N

” M(2)
1~

+Ct* Y Jfﬁ

=0T

()dt

w

SCM "+ N~

L0, T; M05(2))

¢

C4
+er or

3
L20,T; Lz(Q))

62
f (tu)

=t t—1

T EOR.<ct T [

r=t et
625 2
o L2(0. r;H}U(m)’
IE(ONZ < CM ="+ N =) €350
<SCM™"+ N7 l”fl”fu(ﬂm

dtll

l,w

<cr?

and
60~ £ W12 + WO~ YOI
SCM 7+ N Y (KMo + I i)
Thus
BN+ IE@IE+7 T Gale)

SM(t*+ M-+ N~—%),

where M, is a positive constant depending only on || €|, .,
I MI(R2) l”émx‘;ﬂ(n)’ flog/ol Ml(@2) ”626/‘312“L2(0,T;H}U(Q)),
10°¢/08) 120, 7..2m> ¥ N 1.cos MW prrscays NIy and 0.

On the other hand, we use the triangle inequality to
obtain

HE(E) = (D] o SUED) = E* Do + 18 s =0, 1,

(1) = @D 1,0 < W () =¥ *(0)] 1.0 + [T ()] 1,00

By putting the above estimations together, we complete the
proof.

VII. DISCUSSION

It is shown in [9] that the spectral-difference method is
better than the full difference method. But the accuracy is
still limited by the order of the difference approximation. In
this paper, we use the Chebyshev-spectral method in the
direction of non-periodicity. Thus the method keeps the
advantage of “infinite” order and solve the same problem
with a tremendous gain in accuracy as shown both by the
theoretical results and numerical results.

In order to save compution, the Fourier~Chebyshev
pseudospectral method should be used, in which the non-
linear convective term is treated by the collocation method.
Using this method, we have also run the examples in
Section IV and found that the accuracy of the pseudo-
spectral method is nearly the same as the spectral method.
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