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We propose a mixed method for solving the two-dimensional 
unsteady vorticity equations by using the Fourier-spectral approxima- 
tion in the periodic direction and Chebyshev-spectral approximation in 
the non-periodic direction. Some numerical results are given, which are 
compared with those of other methods. Stability of the scheme and the 
optimal rate of convergence are proved. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

There is much literature concerning the numerical solu- 
tion of partial differential equations describing fluid flow. 
For instance, Roache [ 11, Raviart [2], Ben-yu Guo [3 3, 
and Canuto et al. [4] developed difference, finite element, 
and spectral methods. In studying boundary layer flow past 
a suddenly heated vertical plate and some other problems, 
we have to consider unilateral periodic problems, e.g., see 
Murdok [S], Ingham [6], and Moin and Kim [7]. There 
are several ways to solve such problems numerically. 
Murdok [S], Ingham [6], Macaraeg [8], and Guo and 
Xiong [9] proposed spectral-difference methods while 
Canuto et al. [ 10) and Guo and Cao [ 111 used spectral- 
finite element methods. They adopted spectral approxi- 
mation in periodic directions and difference or finite 
element approximation in non-periodic directions. Many 
calculations show that such mixed methods provide better 
numerical results than pure difference and finite element 
methods. 

As we know, pure spectral method has the accuracy of 
“infinite” order. It means that if the genuine solution of a 
partial differential equation is infinitely differentiable, then 
the error of discretization in space is of order higher than 
any order of N - ‘, N being the number of the basis functions 
in spectral approximation. But the accuracy of both the 
spectral-difference method and the spectral-finite element 
method is still limited, due to the approximations in 
non-periodic directions. 

In this paper, we propose another kind of mixed method 
for solving two-dimensional unsteady vorticity equations by 

using Fourier-spectral approximation in the periodic direc- 
tion and Chebyshev-spectral approximation in the non- 
periodic direction. If M and N are the numbers of the basis 
functions in Chebyshev and Fourier spectral approxima- 
tions, respectively, then the error of discretization is of 
“infinite” order. Thus such a method keeps the advantage 
of the pure spectral method. We shall give the scheme in 
Section II and the theoretical results in Section III. The 
numerical results are presented in Section IV. In Section V, 
we list some lemmas. Finally we give strict proof of the 
error estimation in Section VI. 

II. THE SCHEME 

LetZ,=(-1, 1),ZY=(0,2n),andQ=ZI,xZ,.Wedenote 
the vorticity, stream function and kinetic viscousity by 
5(x, y, t), $(x, y, t), and v > 0, respectively. The functions 
fi(x, y, t), f2(x, y, t), and &,(x, y) are given. Let T> 0 and 
consider the following two-dimensional vorticity equations: 

where 

-V’$=<+f2, (x> Y) E Q, t E P-4 Tl, 

5(x, YY 0) = 50(x, Y), (4 Y) E Q, (2.1) 

We assume that all functions in (2.1) have the period 27r for 
the variable y, but 5 and $ satisfy non-periodic boundary 
conditions for 1x1 = 1. For simplicity, we suppose that for all 
yEZ,and tbT, 

r(+l,Y,f)=~(+l,Y,t)=O. (2.2) 
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Let A4 and N be positive integers. We by P, denote the 
set of all algebraic polynomials of degree less or equal M, 
and then define 

V,(Z,)= {u(X)EP~/u(-l)=u(l)=O). 

Let V,(Z,) be the set of all real trigonometric polynomials 
with the period 27~ and the degree less than or equal to N. 
Define 

Let 
o(x) = (I- x2)-‘/2 

and define the space 

L:(Q) = {o is measurable/(u, u), < co } 

equipped with the inner product 

(K UL =& ja 44 Y) 4x9 Y) 4x1 dx d.. 
Let P,,,: L:(Q) + S,,,(Q) be the orthogonal projection; 
i.e., for any UE L;(B), the projection P,,,u E S,,,(Q) 
satisfies 

(U-P M,NU, u), = O, vu E sM,N(a). 

Let t be the step of the variable t and define 

R,= (t=lr/2<1< [T/z]}. 

We shall use the following central difference quotient to 
approximate the term (cX/at)(t) 

Let rl and cp be the approximations to 5 and II/, respec- 
tively. By using the above approximations, we obtain fully 
discrete Fourier-Chebyshev spectral scheme for solving 
(2.1 k(2.2). It is to find (q(t), q(t)) E S,,,(Q) x S,,,(Q) for 
all t E R, such that 

+;%w+r)+~u-r), 0) 

= vi(t), uhm vu E sM,N(a)~ 
(2.3) 

%(cp(t)Y u) = (v(t) +f*(t), u),, vu E sM,N(Qh 

d7) = p,,N 

r](O) = phf,NtO, 

where 

%(K u) = & j Vu(x, Y) . V(dx) 44 Y)) dx 45 
R 

III. THEORETICAL RESULTS 

For error estimations, we need some notations. We first 
introduce some Sobolev spaces with the weight w(x) in Z, 
(see [ 121). For integer s 3 0, set 

=(,I,($>$).,)“*<-} 
and denote by H&,(Z,) the closure of C,“(Z,) in H;(Z,). 
For real s > 0, we define HL(Z,) by the complex interpola- 
tion between the spaces Hg’(Z,) and HE+ ‘](I,). Similarly, 
H&,(Z,) denotes the complex interpolation between the 
spaces Hh$(Z,) and H/$~‘l(Zx). 

Next, let B be a Banach space with the norm I( . (1 and Z an 
interval in R. Define 

L2(Z, B) = {u(z): Z + B/u is strongly measurable, 

II4L2(/,B) < a3 }? 
C(Z, B) = {u(z): Z--f B/u is strongly measurable, 

III4lIB< cc)>> 

where 

I/4LqI,B) = (j, Ib(z)ll:, dz)“‘, 

“‘“i’hZ=~;f Ii”(z)llB. 

Moreover, for all integer p > 0, define 

H”(J B) = {WE L*(A BMl~llwy,.~, -=I a 1 

equipped with 

If real number p >O, then we define H”(Z, B) by the 
complex interpolation between the spaces H[“](Z, B) and 
H[“+“(Z, B). 
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For simplifying the statements of the theorems, we also 
define the following spaces: For r, s > 0, U, p > 1, set 

H:(Q) = LV,, yJZ,)) n ffv,, I;), 

Xza(Q) = H%‘(Q) n H”(Z,, Ht(Z.x)) n I-P+ ‘(I,, Ht-‘(I,)) 

with the norms 

My(Q) = HI;“(Q) n H’(Z-,, H;-‘(I,)) n Hs-‘(Zy, HL(Z,)) 

with the norm 

IId M:;,~(R) = { lI~/12H:;‘(n) + I/afl(,~,ff:,-~(I,)) 

+ ll~IIZH~~‘(I,,H:“(~,))~“2~ 

Now, let C,“(Q) be the set of all infinitely differentiable 
functions defined on Z, x Z,, with the period 27c in the 
variable y. We denote by H:,“,(Q), M;,“,(Q), X;,“,(Q) the 
closures of C,“(Q) in the spaces H:(Q), M:(Q), and 
XL”(Q), respectively. Also set 

H;,;,dQ) = H;,“,(Q) n L’(z,> H;,,(L)), 
M’.” o,,<,(Q) = M;,“,(Q) n L2V,v, f&,AH. 

If r =s, we denote Hz(Q), H$“,,,,(Q), and 11. I)HL;ScR) by 
H:(Q), Hh,JQ), and II .I/T,W for simplicity. The corre- 
sponding semi-norm is denoted by 1. I T,w, etc. 

In addition, we denote by ,?“(I,), L”(Q), and W1*m(Q) 
the usual Sobolev spaces of essentially bounded functions 
with the norms 11. II ca,,,, /I. I( m, and II . II ,,=, respectively 
(see [13]). 

We now consider the generalized stability of scheme (2.3). 
Suppose that the initial values q(O), q(z) and the right terms 
fi(t),f2(t) have the errors Q(O), +7(~),~~(t), andy2(t), respec- 
tively, which induce the errors of n(t) and cp(t) denoted by 
V(t) and q(t). Then they satisfy the equations 

(rlAf)> VI,, + (4?(t) + 8th $(t)), v), 

+ (J(rl”(tL dt)), VLO 

+~a,(li(t+~)+?(t--),v) (3.1) 

For describing the errors, we introduce the notations 

+f’c’ Il~(t’+z)+~(t’-~)Il:,,, 
I’ = T f-7 

p(t)=2 Il~(O)l/t,+2 IliiWl2,+47 c G,(t’) 
f’ = 7 

with 

G,(t)=2 ll?#llt +: Ilv(~)ll:,, Il&72wl: 

+ C(N+M) 
V 

ll~2~t)ll:~ 

where C is a positive constant which could be different in 
different cases. We have the following result. 

THEOREM 1. There exist positive constants M, and M, 
depending only on 111 q 111 I, oo, 111 cp III 1, m, and v, such that iffor 
some t, E R,, 

p(t,) e2M1t1 < M,(N+ M)-‘, 

thenforalltER,,t6tI,wehave 

where 
EC% t) <p(t) e2M’t, 

1111111 1,m =‘l”,aR” Il?(~)llI,m> etc. 
t 

We next turn to the convergence of scheme (2.3). In 
order to obtain optimal error estimation, we introduce the 
projection Ph.,: HA,,,(Q) -+ S,,,(Q), i.e., for any 
UE H~,,JQ), we have 

a,(24 - P a,&, u) = 0, vu E s,,,(Q). 

Now put 

5*(t) = PL,NS(f), G*(t) = c&w). 

Then integrating by parts, we obtain from (2.3) that 

(4?(t), VLO + (44*(t), ICI*(t)), v), 

+ia,(5*(t+z)+C*(t-r),u) 

= (f1(t), VI, + (E,(t), o), 

+ va,(E,(t), 0) + A(v), vu E ~&v(Q), 

aJti*(t), 0) = (t*(t) +f2(f), u), 
(3.2) 

+ b%(t)? v),, vu E ~Mdv(Qh 

4*(t) = PLJW, 

r*(o) = p~.,5,, 



210 GUO ET AL. 

where 

E,(t) = 5?(t) - 2 (t), 

E*(t)= $t(t+r)+ g(t-r)-<(t), 
b(f) = -5*(t) + 5(t), 
A(u) = Lwq), Ii/*(t)) -45(t), IC/(t)), u),. 

Let 
m = v(t) - 5*(t), $0) = cp(t) - ICI*(t). 

By substracting (3.2) from (2.3), we obtain 

(Pi(t)? UL + v(r*(t) + Z(t), 5(O), u), 

+ VmX ti*(t))> u), 

+;u,mt+r)+Rr--?), 0) 

= - (E,(t), u), - %(J%(t), u) - A(u), vu E s,,,(Q), 

%hm 0) = (m UL - b%(t), u),, vu E ~‘w,,dQ)~ 

274 = PM,, 
( 

r(o)+~~(o))-P:,,5(1), 

m, = PM,h& - pL,h& (3.3) 

We have the following result. 

THEOREM 2. Let (5, r(l) and (v, cp) be the solutions of 
(2.1) and (2.3), respectively. Assume that 

(i) 5, $ E C&4 T; M;,“,,,(Q) n WiYsZ) n X;;!(Q)), 

withr,s>l,cc>iand/I>s; 

(ii) For some positive constant C, and C,, 

C,N<M<C,N, r=O((M+ N)-1’4); 

then there exists a positiue constant M, depending only on r, 
$, and v such that for suitably small 5 and M, N large enough, 
we haue 

( 

I--T 
115(t) - rl(t)ll, + z c 115(f) - w)ll:,, 

I’ = 7 > 

(12 

IV. NUMERICAL RESULTS 

This section is devoted to numerical experiment. We give 
two examples. 

EXAMPLE 1. Let Q=(O, 1)x(0, l), I,,= {x=jh/l 
<j<M-1, Mh=l) and Z,={y=j/N/OdjdN-1). 
Define 

E2(t)= $ 
( 

1 It&Y, ~)-dx,y, tv)“‘, 
(-Y.Y)EIhxIN 

where q(x, y, t) is the approximation to 5(x, y, t). Ben-yu 
Guo and Yeu-shan Xiong [9] use the spectral-difference 
(SD) scheme to compute problem (2.1) with two kinds of 
flows in the domain Q. For comparison, we run the same 
examples using the Fourier-Chebyshev spectral (FCS) 
scheme proposed here. The results are 

(i) The first flow. Let 

5(x, y, t) = A exp(B sin(Cx+ 271~) + ot}, 

$(x, y, t)=Aexp{wt}(Cx+sin2ny). 

The errors of both the SD and FCS schemes are shown in 
TableIforA=C=w=0.1,B=0.01,andt=v=0.OO1. 

(ii) The second flow. Let 
4(x, y, t) = A exp{B sin(Cx + 27cy) + ot}, 

t,b(x, y, t) = A exp(wt} sin Cx sin 2rcy. 

The errors are shown in Table II for A = B = C = w = 0.1 
and z = v = 0.001. 

EXAMPLE 2. Let Z, = ( - 1, 1) and Zv = (0, 27~). The test 
functions are 

5 =0.4(x2 - 1)(x2 - 8) sin 2y e112, -V’l) = 5. 

For describing the errors, we define 

TABLE I 

Errors for SD and FCS Schemes 

SD FCS 

I=1 M= 10, N=4 M=4,N=4 

&Cl) 0.2217 x 1O-3 0.5435 x 10 -5 
Em(f) 0.6949 x IO-’ 0.6497 x 1o-5 

We shall prove Theorems 1 and 2 in Section VI. 
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Errors for SD and FCS Schemes 

SD FCS 

i=l M=lO,N=4 M=4, N=4 
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TABLE IV 

Errors for FCS and FSFE Schemes with v = 0.0001, r = 0.01. 

FCS FSFE 

t=5 M=4, N=4 M=4,N=4 M= 10, N=4 

E(t(t)) 0.9165 x 1O-4 0.4532 x lo-* 0.1284x 1OV’ 
E(ti(f)) 0.8448 x 10m4 0.1582 x 10-l 0.1580 x 1O-2 

By Lemma 2 of [ 141, we obtain 

E,(f) 0.1501 x 10-3 0.5456 x 10m5 

7.x = (x, = cos(7cj/N,),j= 0, 1, . ..) N,}, 

Ty= {yj=7cj/Ny,j=0, 1, . ..) 2N,}. 

with 

We use the Fourier-Chebyshev spectral scheme (FCS) (2.3) 
to solve (2.1)-(2.2). For comparison, we also consider the 
Fourier spectral-linear finite element scheme (FSFE), in 
which Z, is uniformly partitioned with the mesh size 
h = 2/M. The results are shown in Tables III and IV. 

It can be seen that the results of the FCS method are 
much better than those of the SD method or the FSFE 
method. Very high accuracy solutions can be obtained with 
the FCS method by using only a small number of modes. 

V. SOME LEMMAS 

We list some lemmas which will be used in next section. 

LEMMA 1. For any u, u E HA,,,,(Q), we have 

6) a,(u,u) 3 + ll4?,,, 

(ii) la,(u, u)l d 2 Iul l,o 14 I,o. 
Proof For integer j, define 

.(x)=&J u(x,y)epijydy. 
‘I 

+j2 II”jllqI, II”jIIw,I,) 
(5.1) 

Clearly UjE HA,,(Z,), and 

a,(u, u)= 1 
a a 

lil =O [( 
z uj9 z touj) > L2(M 

+j'(Uj, Uj)Lt(Ix) . 1 
TABLE III 

Errors for FCS and FSFE Schemes with v = 0.001, z = 0.01. 

( a a -2.., - ax J ax (OUj) 
> LZ(L) 

af ll”jll~,co,lx 

and thus 

a,(u,u)3t f (II~jIIf,,,~x+j2 ll”jIlt,Ix)=d ll”llf,,. 
ljl =O 

Next, we have 

By Lemma 3 of [ 141, we have 

and so 

Ia&, u)l G2 f (I”jIl,w,l, I”jIl,w,I, 
lil =O 

LEMMA 2. rfu E HP;,,, (8) and r, s b 0, then there exists 
a positive constant C independent of M, N, and u, such that 

FCS FSFE 

t=5 M=4, N=4 M=4, N=4 M= 10, N=4 
ProoJ Let ui be the same as in (5.1) and 

P,: Li(Z,) + V,(Z,) be the orthogonal projection. Then 

E(t(f)) 0.3027 x 1O-4 0.4436 x lo-* 0.7188 x 1O-2 
E(+(f)) 0.1687 x 1O-4 0.1592 x 10-l 0.1455 x 10-Z 

IIU- PM,, ull,<C(M-‘+N-“) Iu[,~(,). 

P M,Nu = c (P,+,u,(x)) evy. 
IjlGN 
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By Theorem 2.1 of [lo], 

lI"j-pMujIlw,f~~ CM-' IUjlr,w,l, 
and, thus, 

+ cN-2” C ljl*” ll”jll~,Ix 
lil > N 

LEMMA 3. If UE Hh,,(Q) n M’;“(Q) and r, s 2 1, then 
there exists a positive constant C independent of M, N, and u, 
such that 

Ilu - P$,A I,w <C(M’-‘+N’-“) IuIMycn,. 

If; in addition, for positive constants C, and C, such that 
C, N < M < C, N, then we also have 

lb- ‘i,,N ~11, < C(M-‘+ N-“) Iu~,~s(,). 

ProoJ: Let uj be the same as in (5.1) and 

u* = C (Pauj(x))egy, 
lil GN 

where Phu,(x) is given by 

According to Theorem 1.6 of [15], we have 

<CM”-’ IIujII,,,,X, /*=O, 1, ljl ~0, 1, ...’ 

Using of Lemma 1, we have 

+ C (II”jII~,m,Ix+~2 II”jIIL.Ix) 
ljl >N 

+ CN*(l -S) 
,j;N (ljl *(‘-‘) ll”jlli,,.I, 

+ lj12” ll~,llt,,x, 

< C(M’-‘+ N’-“)* IuJ&~,. 

By means of the duality and the fact that C, N d M < C2 N, 
it is not difficult to show that 

LEMMA 4. if C,NdM<C2N and UEH~,,JSZ)~ 
X;,@(Q) with a > 1, /l> 2, then there exists apositive constant 
C independent of M, N, and u, such that 

I~p~,Null l,co 6 c ll4Ix..s(n)~ 

Proof: Let 

PL,,u= C ui*(x)etiy. 
Iii G N 

Then 

IIpfu,Null 1 l,m,,x + ljl lly* II d,l. (5.2) 
IilGN 

Let uj be the same as in (5.1) and IT,,,, : C(I,) + P, be the 
Lagrange interpolation whose interpolation points are the 
extreme points of Chebyshev polynomials of degree M, i.e., 

I?c 
x, = cos -, 

M 
l=O, 1, . . . . M. 

Then 

ll~JTI 1,,,,,r6 IIUI*-flnM”jIll,m,Ix+ IIUj-nMUll~~.~x~*- 

+ II”jlI l,ao,lx~ (5.3) 

By the inverse inequality in P, (see theorem 1 of [ 16]), we 
have 

~lu~l/~,,,d CM”* Ilqilo,~,. 

By error estimation of interpolation (see Theorem 3.1 of 
C121), 
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By Lemma 1 of [14], 

I v’w’dx<f ( 
au 2 
ax 

j w dx. 
1, 1, 

(5.8) 

~cCM”2~\luj~ui*ll~,~,~~+lIuj~n~ujlll,~,~~~ 
<CM1’2 IlUJ-~I*III,w,,~++~5’2-~ II~,llp,w,,r 

Thus 

GcCM”’ ll”j-‘,* Ill,w,I,+ c IIUjII~.~o,~r~ (5.4) I(J(U~ z), AL I Q I(44 z), u), I 

Because of fi > 2 and w(x) 3 1, 

fmx) c @(Ix) 4 C2Vx). 

Therefore by error estimation in the maximum norm of 
Chebyshev polynomials (see [ 17]), we obtain 

d 2 llzll1.m Il4, IUI1.W’ 
lIUj-nMUjII1,co,l~~~ ‘lnM II”jIlC2~1,)~c II”jII~,o,I,~ 

ti (5.5) LEMMA 6. There exists a positive constant C independent 
On the other hand, we have from Lemma 3 that of M, N such that for all u E S,,,(Q), 

C ItuT II l,z,I,G CM1’2 C ll”jpu,* IIl,o.f, 
IilGN lil G N 

+ c 1 IIUjll/I,w,lr 
llullm 6 CM’” (Ilull,+ iig!i.,). 

IJIGN 

112 
Proof: Let u, be the same as in (5.1). Then uje V,(Z,) 

< CM1’2N1’2 1 Ilu, - u,* I( ;,w,,, and by Theorem 1 of [ 161, 
ljl G N > 

ic 1 112 +C (1 + bW 
\ljl <N / 

’ ,JzN (l + lj12’) Il”jll;,w,,r)1’2 

< CM1’2N1’2(M-1 + N-‘) IIuII~,~ 

+CMl /J m~y.~,,(~YH 
d c II4x”.r(a). (5.6) 

< CM ‘I2 ( 1 (1 +j2)l)12 
lj\ s N 

/ \ 112 

’ ,,zN C1 +j2) ll”jlli) t _ 

By substituting (5.4)-( 5.6) into (5.3) we obtain the estima- 
tion for ll$ II l.m,l,. We can estimate 1 j I II 24; 1) ao,,, in similar LEMMA 7. There exists a positive constant C independent 
way and then complete the proof by (5.2). of M, N, u, and v, such that for all u, v E S,,,(Q), 

LEMMA 5. Zf u, v E HA,,w(f2) and z E W:“(Q), then 

IMU, 21, ULI G 2 II4 I,m II~II, Id 1.0’ 

IlJ(u, ~)llt, Q CN IuI:,w 

Proof: By integrating by parts, it is easy to verify that 

I(J(Ul z), o), + Mv, z), UL I 

I j aw aZ = uv - - dx dy 

d ~151~ma;;(i.T U2WdX)11* 

x(j,,v2widxj1’2dy]. 

Proof We first show that if u E Hi”(Q), u E S,,,(Q), 
and u( -1, y)=O or ~(1, y) =O, then there is a positive 
constant C independent of M, N, u, and v, such that 

IWIlt, G c II40 lig,. llvlL( llullt,+ ~~$~I:)‘:‘. (5.9) 

(5.7) 

In fact. we have 

IIUVII t, G A(u) B(v), 
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where By substituting the above two inequalities into (5.12), we 
obtain A(u)=&jo2r sup u2(x7 Y) +, 

XE I, 

m=ij;,yr,, sup u2(x, v) w(x) dx. 

Let u( - 1, y) = 0, then 

x sup U2(X, y) = sup 
J E r.r s xsl, -1 

224(x’, y); u(x’, y) dx’ 

Because o(x) > 1 for 1x1 < 1, then 

(5.10) 

On the other hand, we have 

B(u)GC s’, II44 .)I1 Lz(f,) 114~ . III Hvyj 4x1 dx 

<c 
0 

’ --I II 0(x, . )II t2c,yj 4~) dx 

X 
s 

’ 1’2 
-1 

114x, . III ;I~,,, 4x) dx 
> 

<c llullo (Ilull%+ lp$)“‘. 

d CN Iul :,w I4 ~,w (ML+ ~i&iigy2. 

(5.11) LEMMA 8. Let?E L;(Q) and u E S,,,(Q) be the solution 
of 

The combination of (5.10) with (5.11) leads to (5.9). 
We next turn to prove the conclusion of the lemma. 

Clearly 

a,(% v) = (3 u),, vv E shf, N(Q). (5.13) 

In addition, au/ax, &lay, &$3x, av/ay E S,,,(Q) and 
Ml:,,+ g 2 

II II 
G c IISII:. 

I,0 

Proof We take u = u in (5.13). By using Lemma 1 and 
Poincare inequality, we obtain 

Hence we have from (5.9) that IM;,,~C IIJ‘ll2,. 

Let 

u= 1 u,(x) euy, f= C x(x)euy. 
lil G N lil CN 

Then uje S,(Z,) for all ljl < N. By putting u = U,(X) eUy in 
(5.13), we obtain 

(  

-&u. qcouj) "ax > +j2tuj, O"j)Ix = t.$T o"j)Ix. (5.14) 
Ix 
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From Lemma 8 of [ 141, 

Moreover, 

Thus (5.14) reads 

Therefore, 

au 2 II II = 1 [j2 IujIf,,,,x+j4 ll”illH,~xl 
5 1.w I,I<N 

LEMMA 9. (see Lemma 4.16 of [ 31). Suppose that the 
following conditions are fulfilled: 

(i) Z is a non-negative function on R,; 

(ii) D, , D, and q are non-negative constants; 

(iii) For all t E R, and t 2 z, 

Z(t)<q+r c [D,Z(t’)+D,Z’(t’)l; 
l’r$-r 

(iv) Z(t) d q and qe 2D~rL < D,/D2 for some t, E R,, then 
for all t E R, and t < t, , we have 

Z(t) < qeZD”. 

VI. THE PROOFS OF THEOREMS 

Proof of Theorem 1. We take v=+(t+z)+q(t-r) in 
the first formula of (3.1). By Lemma 1 and the identity 

we obtain 

W)ll:h+; Ilr?(t+z)+ri(t--)(I:,,+ i F,(t) 
/=l 

<; IlW+5)+I?(~--Z)llt,+2 ll7,Wll2,? (6.1) 

where 

F,(t) = I(J(vr(tL @(t))> ii(t + z)+ ii(f - z)), I, 

F,(t) = I(J(r?(t), cp(t)), r?(t + 2) + r?(t - T)), I, 

Fdf) = IMri(th 4(t)), r”(t + r.) + ii(t- z)), I. 

By Lemma 8 and the second formula of (3.1), 

G w7(~N;+ ll72T2(t)ll%). (6.2) 

Now, we are going to estimate I F,( t)l. Clearly we obtain 
from (6.2) that 

F,(t) d Ilr”(t + z) + ri(t- t)llco IIJ(vr(t), @(t))li, 
G c Ilri(t + 7) + ii(t - ~)lll,w 

x Ilrl(~)lll,m I@(f)ll,w 

<$ Ilw+~)+ri(~-~)ll:,, 

+; IIrl(~)ll:,, M~)ll2,+ ll72:2(mJ (6.3) 

We have from Lemma 5 that 

F2(f) d C lld~)ll~,cc Ilr?(t)ll, Ilii(t + z)+ r?(t- %, 

6$ llY?(t+~)+m--Z)lI:,, 

+; lM)ll:,, ll%W (6.4) 

Furthermore, by (5.7), (5.8), (6.2), Lemma 6, and Lemma 7, 
we obtain 

FAtI G IV(ii(t + z)+ ri(t - ~),$(t)), rl(t))w I 

d CN”’ Ilii(t)ll, llii(t + z)+ r?(t - ~)I1 1.0 

x IM(~)ll, Ilrl(t + t) + ri(t- ~)lll,o 

<; Ilii(t+~)+ri(~-~N:,w 

+ C(N+ W 
V 

miw11:+ ll72:z(wJ (6.5) 



216 GUO ET AL. 

By substituting (6.3)-(6.5) into (6.1), we have 

(ll?(m+~ Ilri(t+~)+ij(t--z)ll:, 

<f Iltj(t+T)+I?(t--)ll2, 

+ C, ll~Wll2, + G IlrlWll: + G,(t)> (6.6) 

where 

c, =; (lllvlll:,, + lllcpIlI:,,)~ C,+v+M), 

G,(t) = 2 ll~1Wll2, +; Ilvr(N;,, ll”mll2, 

+ c(N+ w 
V Ilmll t. 

We sum (6.6) for all t’ E R,, t’ < t - r to obtain 

+ C, IlW)llt, + G,(t’)l. (6.7) 

Let r < 1. Because 

Ilfi(t+z)+q(t--)Il;<2 Ilrj(t+NZ+2 IIW-a;> 

then (6.7) leads to 

I--T 

EC% t) <p(t) + 42 c [(C, + 1) E(Q, t') + C,E2(& t')]. 
I’=7 

Finally, we complete the proof of Theorem 1 by applying 
Lemma 9 with 

D,=4(c,+l), D,=‘t’$, q=P(t). 

Proof of Theorem 2. It is easy to obtain from Lemmas 1 
and 5 that 

Iwo(E,(t), ~11 9&j bl:,,+ 128~ I&WI:,,, 

I4fJ)l Q IV(5(t) - t*(t), $*(t)), u), I 
+ I(J(tTt), IC/(t) - 4+*(f)), u), I 

= IMat) - 5*(t), $*(t))Y 01, I 
+ IV(IC/(t) - Ii/*(t), t(t))? VI, I 

G 14Lo w*(t)llI,, l15(t)-4*(~)llw 
+ ll5(t)ll l,@z II++(t)- Il/*(t)ll,) 

G& lul~,,+~(ll~*(t)ll~,, 

x 114(t) - 5*m: 
+ ll5(~)ll:, IIll/ - ICI*wt). 

We take u=r(t+~)+ r(t-z) in (3.3). By an argument 
similar to that in the derivation of (6.6), we obtain 

mllih+~ Ilc%+~)+~~~--z)ll:,, 

G$ Il~(t+~)+~(t--Z)ll2,+C: IlmllZ, 

+ C: Il%)lli + (72(t)> (6.8) 

where 

c: =~clllc*lll:, + lll$*llt:,,,? c: = G, 

G2(t) = II&Wllt, + 128~ I&WI;,, . 

+: ll5*(N:,, IlE,wll:+~ (N+M) II-w)ll~ 

+;w*(t)ll:,, IIt - 5*(~)112, 

+ IIWII~,, II+(t) - Il/*(tNl3. 

So far, we can obtain a conclusion similar to Theorem 1. 
In order to complete the proof, we only have to estimate 
c:, IlmwJ~ llRmJ~ and G2(t). First, Lemma 4 leads to 

1115*111 1,cc 6 c lll5lllxqn)~ 
Ill ** Ill 1, m d c Ill Ic/ Ill X+2). 

Second, Lemma 2 and Lemma 3 lead to 

lliw)ll, G 115(O)- p M,NS(O)llo + IIW) - cf,N5KMIJ 
G C(M pr + N-7 Ilt(o)ll My(n). 
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Similarly, we have from Taylor formula that 

+ 5(r~-5~O)-+v 

/I II w 

and 

115(t) - 5*m + IIICl(t) - ICI*(t)ll2, 
Q C(M pr + N -‘)* ( III5 III &(n) + Ill+ Ill i.,;;~(a)). 

Thus 

where M, is a positive constant depending only on ))I 5 111 i, oo, 
III 5 III ,+p(Q)? lll5lll x”;q,p IIIx/~tIII ‘q(Q), Il~2~I~~211.~(~,,~~(~))~ 
iiwahi LZ(O, r:L$2,,, IllvVlll,ao~ llllcllllM~(o)~ 11111/111~~(,)~ and v. 

On the other hand, we use the triangle inequality to 
obtain 

ll4(t)-?(t)ll,,,~ 115(~)-5*(~)llr,,+ llRfH,,uJ~ I=O, 1, 

Iti(t) - cp(t)l l,w Q I+(t) - +*(tN I,W + 1m I.0 

By putting the above estimations together, we complete the 
proof. 

VII. DISCUSSION 

It is shown in [9] that the spectral-difference method is 
better than the full difference method. But the accuracy is 
still limited by the order of the difference approximation. In 
this paper, we use the Chebyshev-spectral method in the 
direction of non-periodicity. Thus the method keeps the 
advantage of “infinite” order and solve the same problem 
with a tremendous gain in accuracy as shown both by the 
theoretical results and numerical results. 

In order to save compution, the Fourier-Chebyshev 
pseudospectral method should be used, in which the non- 
linear convective term is treated by the collocation method. 
Using this method, we have also run the examples in 
Section IV and found that the accuracy of the pseudo- 
spectral method is nearly the same as the spectral method. 
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